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Abstract. We consider the leptonic and semileptonic (SL) lepton-flavor violating (LFV) decays of the
charged leptons in the minimal supersymmetric standard model (MSSM) with right-handed neutrinos. The
parameters of the MSSM model are determined in the framework of the minimal supersymmetric SO(10)
GUT model assuming the minimal supergravity model of supersymmetry breaking. The free parameters
of the model are constrained adopting the WMAP cold dark matter constraint and adjusting the neutrino
oscillation data. So constrained, the SO(10) GUT model gives a definite prediction for the Dirac-neutrino
Yukawa matrix, which induces all LF'V effects in the MSSM model through renormalization group equations
of soft SUSY breaking parameters. A very detailed numerical analysis has been made to define numerically
all MSSM parameters necessary for the evaluation of the LFV amplitudes. The basic LFV amplitudes in
MSSM were rederived and improved. The formalism for the evaluation of all SL LF'V amplitudes is given.
Numerical results for dominant SL LE'V branching ratios, the anomalous magnetic moment of the muon and

the £ — ¢/~ branching ratios are given.

1 Introduction

The discovery of neutrino oscillations [1] is the first ex-
perimental evidence of physics beyond the standard model
(SM) of the electroweak interactions. In SM, neutrinos
are massless purely left-handed particles, so there is no
leptonic analogy of the Cabibbo—Kobayashi-Maskawa
(CKM) matrix. The neutrino oscillation experiments
proved that the neutrinos do mix and that they do have
mass. The mixing matrix in the lepton sector, the Maki—
Nakagawa—Sakata (MNS) matrix [2] has a bi-large mixing
structure [3—5], indicating that the source of the lepton-
flavor mixing is different from the corresponding mixing
in the quark sector. The lepton-flavor mixing observed
in neutrino oscillations is the first confirmation that the
lepton flavor is not a conserved quantity. Therefore, ex-
perimental observation of the other lepton-flavor violating
(LFV) processes is naturally expected. The theoretical
study of such processes has a long history before the ob-
servation of neutrino oscillations. The model-independent
study of the operators using SM fields [6—8] shows that
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there are no LFV operators of dimension less or equal
to four. There is one dimension five LFV operator that
induces neutrino oscillations. The LFV decays can be in-
duced only with the operators of dimension six or more. As
new physics is expected to appear at the scale much larger
than the electroweak scale ~ 246 GeV, the LF'V decay ef-
fects are expected to be much more suppressed than the
neutrino oscillation effects. A model-independent study of
the LFV processes gives the limits on LFV which every
model has to satisfy. A model-dependent analysis is de-
termined by the structure of the model but is much more
predictive than the corresponding model-independent an-
alysis. Therefore, both approaches are indispensable for
a theoretical study of LFV. Although the leptonic LFV
processes have been studied extensively both in a model-
independent way and using various models [9-40, 42, 43]!,
the semileptonic (SL) LFV processes have been studied
only in a few models [44—50].

Supersymmetric (SUSY) models have much nicer the-
oretical properties than their non-SUSY counterparts.
For example, quadratically-divergent contributions to the
Higgs boson mass from heavy (e.g. GUT scale) particles

L For a recent review, see, for example, [41] and references
therein.
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cancel with its SUSY partners, and as a result the gauge-
hierarchy problem is much better resolved. The super-
symmetrization of SM cannot be done without additional
assumptions. For instance, in the supersymmetric version
of SM there are dimension-four operators violating both
lepton number ([) and baryon number (), leading to very
fast proton decay [52—57]. That led us to the introduction
of a discrete Zy symmetry, the so-called R-parity [51-57]
to forbid such undesirable terms. SUSY breaking has also
to be done in such a way as not to induce too large flavor-
violation effects. There are few successful SUSY-breaking
mediation mechanisms, such as gravity mediation [58—60],
gauge mediation [61, 62], anomaly mediation [63, 64], gaug-
ino mediation [65—67], radion mediation [68], etc. The best
established among them is the minimal supergravity model
(mSUGRA) [58-60], which assumes that SUSY breaking
occurs in the hidden sector at a very high scale, which com-
municates with the visible sector (containing SM) with
flavor-blind gravitational interactions. The induced soft
SUSY-breaking mass terms are required to be universal
at the SUSY-breaking mediation scale (say, the (reduced)
Planck scale), and are therefore flavor-diagonal. The mag-
nitude of the soft SUSY-breaking mass terms obtained is in
such a range that they may induce potentially observable
consequences in the visible sector. The renormalization
group (RG) flow from the (reduced) Planck scale to the
mass scale of the right-handed neutrinos induces the fla-
vor non-diagonal terms in the SUSY soft-breaking terms
for the sleptons, through the flavor non-diagonal Dirac-
neutrino Yukawa matrices they contain [69]. They can
lead to considerable LFV effects, which, depending on the
model parameters may be in the range of the forthcoming
LFV experiments [70-73].

In this paper, we assume MSSM with three right-
handed neutrinos as the low-energy effective theory below
the GUT scale. In such a framework, the neutrino oscil-
lation data suggest the existence of very massive right-
handed neutrinos which give rise to small left-handed
neutrino masses through the see-saw mechanism [74-76].
In SO(10) models, the required right-handed neutrinos
may naturally be embedded into the common multiplet
together with the SM particles for each generation. In
this paper, the minimal renormalizable SUSY SO(10)
model [77-87] will be taken as a theoretical starting
frame. One of the advantageous points of this model
is the automatically conserved R-parity defined as R =
(—1)3(B=L)+28 [51 54-57,103], where S represents the
spin of a field. Namely, the SO(10) model discussed here
spontaneously breaks the gauged B—L symmetry by two
units, leading to automatic R-parity conservation. The
breaking of the SO(10) group to the SM gauge group,
SU(3)¢ x SU(2)1, x U(1)y [88—90] and its phenomenolog-
ical consequences [43,91, 92] has already been discussed in
our previous publications.

The main goal of this paper is an analysis of neu-
trinoless SLL LFV decays of charged leptons within the
MSSM model, where the parameters are obtained from
the underlying SO(10) model. At the same time, we in-
tend to see how the previous phenomenological analyses
constrain the LFV parameters. The paper consists basi-
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cally of three parts, which are given in three sections.
In Sect. 2, we give the MSSM form factors comprised in
the LFV amplitudes at the quark—lepton level. We rederive
these form factors, because some of them were not de-
rived completely in the previous literature. In Sect. 3, the
charged-lepton SL LFV amplitudes at the lepton—meson
level are derived using a simple hadronization procedure
for the quark currents. The branching ratios corresponding
to these amplitudes are also given. In Sect. 4, the mini-
mal renormalizable SUSY SO(10) model is described. Con-
straining the free SO(10) model parameters by adjusting
the neutrino oscillation data with corresponding theoret-
ical quantities at the electroweak scale, the Dirac-neutrino
Yukawa matrix is fixed. With the SO(10) model parame-
ters and Dirac-neutrino Yukawa couplings thus fixed, the
parameters of the MSSM model at the electroweak scale
are derived, too. Using the MSSM model parameters thus
derived, a numerical estimate for the SL LF'V processes
is performed. The last section is devoted to a summary.
In Appendix A, we give our notation for the neutralino,
chargino and sfermion mass matrices. The MSSM La-
grangian for the fermion—sfermion—(gaugino, Higgsino) in-
teraction and the trilinear interactions with the Z bo-
son are given in Appendices B and C, respectively. In Ap-
pendix D, we present the loop functions needed to evaluate
the SL LFV processes. The quark content of the meson
states, essential for the hadronization of quark currents,
is listed in Appendix E, together with the constants that
define the hadronized quark current in the y-penguin and
Z-boson-penguin amplitude.

2 Effective lagrangian for LFV interactions

2.1 Sources for LFV interactions

Even though the soft SUSY-breaking parameters are fla-
vor blind at the scale of the SUSY-breaking mediation,
the LFV interactions in the model can induce the LFV
sources at low energy through renormalization effects [69,
70]. In the following analysis, we assume the mSUGRA
scenario [58—60] as the SUSY-breaking mediation mechan-
ism. At the scale of the SUSY-breaking mediation, which
is taken to coincide with the GUT scale, we impose the
boundary conditions on the soft SUSY-breaking parame-
ters, which are characterized by five parameters [93,94]:
mo, My,2, Ao, B and u. Here, mg is the universal scalar
mass, M/, is the universal gaugino mass, and Ay is the
universal coefficient of the trilinear couplings. The param-
eters in the Higgs potential, B and p, are determined at
the electroweak scale so that the Higgs doublets obtain
the correct electroweak symmetry-breaking VEVs through
the radiative breaking scenario [94-98]. The soft SUSY-
breaking parameters at low energies are obtained through
their RGE evolution from their boundary-condition values
at the GUT scale to the electroweak scale.

Although the SUSY-breaking mediation scale is nor-
mally taken to be the (reduced) Planck scale [70,98,99]
or the string scale (~ 108 GeV), in the following calcula-
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tions we impose the boundary conditions at the GUT scale
(~ 106 GeV). This ansatz is the same as the one in the so-
called constrained MSSM (CMSSM) [94].

The effective theory which we analyze below the GUT
scale is MSSM with right-handed neutrinos. The superpo-
tential is given by [70]

Wy = quj (U’%{)i ‘ZiHU‘FYdij (df{)i qJHd‘FYuij (VIC{)iEJ'HU
VR)i (Vf{)j +uHqH, ,
(1)

where the indices ¢, j run over three generations, H, and
H,; denote the up-type and down-type MSSM Higgs dou-
blets, respectively, and MRij is the heavy right-handed
Majorana neutrino mass matrix. We work in the basis
in which the charged-lepton Yukawa matrix Y, and the
mass matrix MRij are real, positive and diagonal matri-
ces [70]: Y7 =Y,.4;; and My, = diag(MR, , Mr,, MR,).
Thus, LFV originates from the off-diagonal components of
the Dirac-neutrino Yukawa coupling matrix Y,. The soft
SUSY-breaking terms are [70]

2‘) G+ (m%)*-ﬂl’u’ +df, (m%) -de
+4 (m ) €—|—1/Rl( 2 DR+ éh; (m m2), &r;
+mi[quHu+deH;Hd

3 1
+Y./ (ecR)iéde"' §MR1‘]‘ (

Loty = (j;f (m

+ (BquHu + %BVMR”. A7 +h.c.>
+ (A il Hu+ A b, g Ha+ D)
+ (Ao G, + AVEL Lyt he.)
¥ <§M133+ e g Gr e +h.c.) .
(2)

The universal boundary conditions at the GUT scale (see
e.g. [70,100-102]) read

(mg)” = (ml%/)” = (mg)” - moém )

2 2 2
mHu_de_m07

Al =AY, A =AY,
A =AY, AY =AY

My =My = Ms= M. (3)

The soft SUSY-breaking parameters are evolved to the
electroweak scale according to their RGEs given in [103,
104]. The p parameter and the B parameter are deter-
mined at the electroweak scale minimizing the Higgs po-
tential [94],

2 2 2
= a0 1
tan? 5 —1 2
1 1
Bu=—3 (m?{d +mi, +2|H|2) sin 23 (: §m,24 sin 2ﬂ> :

(4)
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The off-diagonal components of the matrices of the soft
diagonal SUSY parameters, such as (mg) and AY, are
sources of LFV. They are induced throué;h the Dirac-
neutrino Yukawa terms in the RGEs [70, 104], such as

d o

ud_/‘ (mZ)ij:
i (m3), T (m2Y,]Y, + Y, Y, m?
dp Ulygsy  16m2 YT YR

+2VmZY, +2my VY, +24]A,), .. (5)
The first term on the right-hand side of (5) denotes the
flavor-diagonal MSSM term. In the leading-logarithmic ap-

proximation, the off-diagonal components (i # j) of the
left-handed slepton mass matrix read [43, 70, 104]

_ 3mg+ A3

o3 (YJLY),. - (6)

Distinct thresholds for the right-handed Majorana neutri-
nos are taken into account by the matrix

M,
Lij = log <M—§> 6”‘ .

7

It is obvious that the Dirac-neutrino Yukawa coupling
matrix plays a crucial role in calculations of the LFV
processes.

2.2 Effective Lagrangian in terms of quark fields and
LFV form factors

In any model containing the standard model as the low-
energy effective theory in the lowest order of perturbation
theory, an effective Lagrangian for the SL LFV decays of
a lepton contains only three terms: the photon-penguin,
the Z-boson-penguin and the box term,

Lot (Ui — 4+ G+ ) =iL)g+iLZ+icly*.  (7)

These terms have the following generic structure:
iC30(0) = —i€? [ A9 (@) | (~08+ 9.0,) D~ )

x (Pr, Pr+PL Pr)
+0,,,07D(x —y) (P PL+ PR Pr) } 0:(x)

XY Quayaly), (®)
q=u,d,s
2 —_
i£5(@) = i~ (@), (PE P+ PEPR)(@)
70w
Z (Isg — 2Qqst) 7" — Isgv"¥5)q(x) ,
=u,d,s

9)
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chox =i

>

Jaqp="uu,dd,ss,ds,5d
+qu ab (64" Prts) (GavuPras)
+ By, (67" PLL) (a7 Prav)
+ Bé:%a‘]b (67" Prts) (GavuPray)
+ Bgiaqb G Pul;)(GaPugs)
+ Biq, (6 Prls) (@ Pray)
+Biq, (6 PLli) (G0 Prav)
+ B, (6 Prls) (@0 Puay)
+ Bf;qaq 000, PLl;) (3o Pray)
40 Prts) (‘jaUWPqu)} ,

[qu a (67" Puti) (@avuPray)

b
b
b

b

~ I~ I~ o/~ o/~

+ B (10)
where sw =sinfw and cw = cosfw, Q, is the quark
charge in units of electromagnetic charge e, and I3, is
the weak quark isospin; g is the weak coupling constant;
PrL = 3(1£75); D(z—y) is the Green function for the
massless scalar particle, contained in the photon propa-
gator. The structure of the photon-penguin term in the
effective Lagrangian is a consequence of the gauge in-
variance. Especially, the first term must contain @0,
which was neglected in [70]. The information of the model
under consideration is contained in the form factors PE¥,
a=1,2,Py" BL . and By, a=1,2,3,4. In the fol-
lowing three subsectlons these form factors are given for
the MSSM.

2.2.1 The photon-penguin form factors

The amplitude for ¢; — ¢;v* for an off-mass-shell photon
process is obtained from the corresponding part of the ef-
fective Lagrangian neglecting the quark current and the
photon propagator,

M, =iT)] = —euy, [ (@° v — aud) (,P%’YPL +,P1RVPR)

+i0,q" (PY P+ P PR) }ue (11)
The amplitude is written without photon polarization
vector.

In the MSSM the photon-penguin amplitude has two
contributions, a chargino and a neutralino contribution
(see e.g. [70]). This is reflected in the structure of the form
factors,

LR _ C)L,R N)L,R
Pa’y - P(E’y) + ,Pzgfy ) )

a=1,2, (12)
with the C and N superscripts denoting the chargino and
neutralino part of a form factor.

Because of gauge invariance, the zeroth-order term and
the first-order term in the Taylor expansion in the mo-
menta and masses of the incoming and outgoing particles
are equal to zero. Here, the second-order term in the Taylor
expansion is presented, and higher-order terms are neg-
lected.
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The neutralino contributions are

PNIL _ i R(e) n/R(e)x 1
1y - 5761 2 JAX “VIAX mg
€x
« 11(2% 5 )® = 18(2%x)* +9(xh x) =2 —6(2% x)® In(29 x)
(1-2%x)*
(13)
PR =P Lok, (14)
N)L { R(e R(e)* 1
P = g5z [N Niax (~L)my —
€ex
. 2@0x)? +3(@hx)? — 6(afx) + 1= 6(zfx)* In(2f x)
6(1— x(/)xx)4
e e)x* 1
+ NALNAR (~1)mi—
ex
% 2($0Ax)3 + 3($0Ax)2 - G(xAX) +1- 6(5”?4)()2 ln(x%X)
6(1—2%y)*
L(e) ArR(e)* 1
+N NlAX (—1)m2%@
_(x%X)2+1+2(x?4X) 1D($?4X) (15)
(1- x?qx)?’ ’
PER =PI Ler, (16)
where 2%, = ME% /méx. The chargino contributions are
given by
oL 1 R(e) ~R(e)x 1
1y - 57671'2 JAX YiAX m?/X
x (16 —45(z 5 ) +36(z 4 x)° — T(2x)
_ _ 1
+6(2—3(z4x)) In(z, ) ———, (17)
(I-2y4x)
POR PO (18)
i Ry 1
PQ'y 32’/T2 jAX CYZAX J m2
vx
« 2+3(x,x) —6(xax)* + (Tax)® +6(z4x) In(z,x)
6(1—2,x)*
(€)% 1
+C O ) m;—;
mg.
« 2+3(z4x) —6(z4x)* + (24x)* +6(x,x) In(z, %)
6(1—a4x)*
+ OO m
1 —344(xx) — (tax)* —2In(z, ) (19)
m?,X (1—z,x)3
Pz(s = ,PQS)L|L<—>R» (20)

where z, = Mi, /mZ . To make the comparison with
the results of [70] easy, the form factor contributions are
written in the same way, including the explicit expressions

for the loop functions. Both the chargino and neutralino
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part of the form factors agree with the corresponding form
factors in [70] if the terms proportional to the mass of the
lighter mesons m; are neglected. Nevertheless, these terms

cannot be neglected, because the constants N, - R(e) and

C’]LA X( ©) (see Appendix B) also depend on the lepton masses
in such a way that in some cases the term proportional to
my; is larger than the term proportional to the mass of the
decaying lepton m;.

2.2.2 The Z-penguin form factors

The amplitude for the off-mass-shell ¢; — ¢; Z* amplitude
reads

z_ 1 (N)L
M = Wgwj [')/MPL (73 —|—73 )

+’Y#PR (P(ZC)R+P(ZN)R> :|’u,ei , (21)

where P(C)LR and P(N LR are the chargino and neu-

tralino parts of the total form factors, 'PIZ“’R. The expres-

sions for these form factors are

,P(ZC)L _

(e R e) L
—2E§E§_)FQ <m§x,m§A,m§B>
+5ABGZef1 < VX7miA> :|
e L L(e)*

n {CJB(X)E XD k) [ 2F, ( VX,mfa,mle_g)] } ,

(22)

Py (ML _
ZVJIZ(;)NEL‘(?* |:— 2D§:2(F2 <m§%, mE;X,ng>
+0yx G f2 (m%o 7méx> }

L(e L R(e
(W

2
[m 0 Mg 0F1< eX,m O’mx‘))}

+ N gL ’N“Sg*[ 2By (m? m ,m2y)| b, (23)

PR~ pOL(L &4 R), (24)
-0 -0
PR —pMk(@, Ry, ERED = _gEX) (25)

ERE) and ELN B(®) are constants in the Z-boson—char-

gino and Z- boson—neutrahno vertices, and DQ( is a con-

stant in the Z-boson—selectron vertex. These constants are
defined in Appendix C. G%_ and G%, are constants appear-
ing in the SM Ze;e; vertices,

EZeiej = _gyuéij{G%ePL +G1§6PR}

— 9Vulij { [
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Fi(a,b,c) and Fy(a,b,c) are loop functions contained in
the triangle-diagram part of the amplitude, and f; and f3
are the loop functions coming from the self-energy part of
the amplitude. They are given in Appendix D.

The terms in (22) and (23), which have a corresponding
contribution in the photon amplitude (the leading-order
photon-penguin amplitude comes from six Feynman di-
agrams, while the Z-boson-penguin amplitude has eight
Feynman diagram contributions), have been compared by
replacing Z-boson vertices with the corresponding photon
vertices, and agreement has been found. The remaining
two Feynman diagram contributions, which are embraced
by curly brackets in (22) and (23), have been carefully

checked. The new terms in ’P(ZC)L in comparison with [70]
are the third (self-energy-type term) and the fourth term.

Further, neither of our terms in P(ZC)R does agree with
the amplitude in [70], although the expression in the curly
brackets is almost equal to it (in [70] in formula (27), the
Inz4x term should not appear, and in (28) 1/ mf;X should

be replaced by 1/m2 ).

2.2.3 The box form factors

The box contribution to the SL LFV ¢ — ¢;G,q, amplitude
comes from two box-diagrams in the leading order of per-
turbation theory. The box amplitude reads

@r X

qaqb:ﬂu,(id,Es,d_s,Ed

Mbox =

[B%qalﬂg (ﬂe"Y”PLWi)(ﬂfIa'YuPLU%)
+ Bl g, (@7 Prug, ) (g, v Prvg, )
+B2Qa‘]b 1_//[ ’Y“PLU[ )(ﬂQa’Y,U«Pqub)

7" Prue; ) (g, v PLug,)

(
(
2t7aqb(
+ By, g, (g Puug, ) (g, Prvg,)
+B§1a‘]b( Uy Pruy, ) (g, Prvg,)
+Bi];t7aqb( tig; Prug, ) (tig, Prg,)
+B_§‘7a‘]b (ﬂeg PRuf')(aqa PLUqb)
+Bélfqaqb (te; 0 Priue; ) (g, 0 Prug, )

+B‘13§aqb (’E@Ju,,PR’lui)(ﬁan”VPqub) (27)
The very rich structure of the box-diagram amplitude is
a consequence of the Fierz transformation of the terms con-
taining a product of lepton—quark and quark-lepton vector
and axial-vector currents. All currents permitted by the
Dirac algebra do appear. (The £ — £'¢145 box amplitudes
studied in [70] do not have so rich a structure — they do not
contain Bgéaqu contributions.) Each box-amplitude form
factor has a chargino (C) and a neutralino (N) contribu-
tion. We have

LR _ p(N)LR

B“]aQb - quaqb + quaqb ) (28)
L, R (N)L,R

BSqaqb - B3qaqb + B3qaqb (29)
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Here and in the following equations, the indices q,q;, as-
sume the values appearing in the sum in (27). The neu-
tralino contributions read

v _ 1 2 2 2 2
Bidea, = Zd2 <M>2?4’M>293’méx’méy>
R(e)* ArR(e R(q)* AR
X Ny NiR Nosd N2

1 2 2 2 2
+5do (Mi%,Mi%,méX,mqY> Mo Mgo

R(e)* r+R(e)* r+R R
X NS N Ny NSt (30)
(N)L _ 1 2 2 2 2
Bl = —1d2 (MXOA, MX%,méx,mqY)

R(e)* arR(e L(q)* 7L
X Nigx Nipx Nysl Nty

1 2 2 2 2
— §d0 (M)Z%7M)Z%’méX’mQY) M?Z%Mi%

X NR(E)*NR(E)NL(‘Z)*NL(Q)

1AX “'jBX DAY aBY (31)

(N)L _ 2 2 2 2
83%% =dp Mi%’MX%’méx’méY

l R(e)*

L(e R(q)* 7L
XMQOAMX%{ gtViax ]VjB(X)'NbB(g’) Naf(x%l

SNENELNLE N @
Biguny =2 (Mo, Mg miy iy )

x { - VR NN N

SNEUNEINAR NI @9
Bl = 0 (363 263y it )

Mg Mg, {NES NN NEY

- NES NEING N (34
Bigun = BlalLor  (=1,...,4) (35)
Bl = Bi Lo - (36)

The chargino contributions are

©orn _1 2 a2 2 2
Bigea, = 7% <M>zA’M>zB’m”X’mq'Y>

R(e)* ~R(e) ~R(q)* ~R
X Cia% " Cip% oy Canpdad

1 5 ) ) )
+ §d0 <MXA ) M)ZE ) ml)X ) mq-,Y
R(e)* ~R(e)* ~R R
x My M- CRY Clp v O Squ, (37)
2 2 2 2
2 <M>ZZ 5 M)ZE 5 mf’X y mq—,Y>
R(e)x ~R(e L(g)* ~L

1 2 2 2 2
—_ §d0 (M)ZZ y M)ZB y ml;X , M

qdy

oL _ 1
BQ‘YaQb - _Zd

R(e)* ~R(e) ~L(q)* ~L
x MM Ol G Coay Cagh o, (38)
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3qaqp Uxo mq-/

B — g, (M?,M?,m2 2 )
XA Xp Y

1 R(e)* ~L(e R(q)* ~L
x M- M { = SO O O Cof ua

XB 2 ¢ J
1 R(e)* ~L(e R(q)* ~L
— SO RO C b } (39)
Z(C)L _ 2 2 2 2
Bidaa, = &2 (Mx; ’ M»zg’m"x’mq?y)
1 R(e)* ~L(e L(q)* ~R
x{ = SOR AL O O dua
1 R(e)* ~L(e) ~L(q)% ~R
lomorosyosrerws, ), o)
©orn _ 1 2 a2 2 2
B4qaqb - 8d0 <MXA7M>ZB7mVX’mq/Y>
R(e)* ~L(e R(q)* ~L
x Mg;\MgE {CiA(X) ijg)gcbfgqy) Caf(xq})/aqd
R(e)* ~L(e R(q)* ~L
- O OO O o} (41)
(C)R _ p(C)L s
Bi%qb = Bidaa || g (2—1,... ,4)7 (42)

where ¢’ = d(u) for ¢ = u(d). Summing over paired indices
is assumed. The Kronecker function &4, [044] denotes that
the ¢ quark is one of the up (u, ¢ or t) quarks [one of the
down quarks]. The loop functions dy and ds are evaluated
by neglecting the momenta of incoming and outgoing par-
ticles. They are listed in Appendix D.

3 Amplitudes and branching ratios

3.1 Hadronization of currents

The effective Lagrangians (the matrix elements) for pho-
ton and Z-boson part of the amplitudes for SL LFV lepton
decays comprise vector and axial-vector currents, while the
box amplitude contains all possible quark currents per-
mitted by the Dirac algebra, that is scalar-, pseudoscalar-,
vector-, axial-vector- and tensor-quark currents. To per-
form a calculation of the charged-lepton SL LFV decays
rates, these currents have to be converted into meson
currents comprising the mesons states studied of the fi-
nal products of the charged-lepton SL LFV decays. The
hadronization procedure we use here is not exact in the
sense that we do not include the sea-quark and gluon
content of the meson fields, but it is precise enough to
give much better than an order of magnitude decay rates
of the processes considered. The quark content of the
meson states is given in Appendix E. The hadronization
of the axial-vector current is achieved through PCAC
(see e.g. [105-107]; for the normalization of the pseu-
doscalar coupling constants used here and for further de-
tails see [44]). The hadronization of the vector current is
achieved using the vector-meson-dominance assumption
(see [106,107]; for the normalization of the vector-meson
decay constant and details see [44,45,108]). Hadroniza-
tion of scalar currents is achieved by comparing the quark
sector of the SM Lagrangian and the corresponding ef-
fective meson Lagrangian [109-111] (for applications in
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the context of LFV and details see [45]). Hadronization
of the pseudoscalar current is obtained by the same pro-
cedure as for the scalar current. The results obtained by
using this procedure are equal to the results obtained by
using the equation of motion for the current-quark masses
(see e.g. [112]) and the results for hadronization of the
axial-vector current, up to the difference of the up and
down quark masses and /or up to the difference of the pseu-
doscalar decay constants. The hadronization of the tensor-
quark currents is obtained by comparing the derivative
of the tensor-quark current with a vector-quark current
and using the equations of motion for the current-quark
masses. The difference between the terms, one containing
the derivative of the incoming quark field and the other
containing the derivative of the outgoing quark field, have
been neglected. The error expected from this approxi-
mation is proportional to the amount of breaking of the
SU(3)favor symmetry. The tensor currents are proportional
to the current-quark masses, and therefore they give a
smaller contribution than the other quark currents. There-
fore, the error introduced by this approximation in the
total SL LFV amplitude is small.

Here we summarize the basic quantities needed to de-
scribe the hadronization of quark currents:

1. the pseudoscalar meson decay constants [113] (fp, P =
70,17, K% K°);

2. the constants vy [108] (V = p°, ¢, w, K*9, K*0) defining
the vector-meson decay constants ( fy ~m?, /yv);

3. the mixing angles 6p and 0y [113] defining the physical
meson-nonet states in terms of the unphysical singlet
and octet meson states;

4. the parameter r [109-111] (m,, mq and m, are the
current-quark masses), with

2 2
. 2m- _ 2mi _ 2mK+ (43)
My +Mg  Mag+ms My +mg’

that appears in the hadronization procedure for the
scalar and pseudoscalar currents.

Having the identification of the quark currents with
the corresponding meson currents, achieved by the above
hadronization procedure, one can write down the effective
Lagrangian as a sum of terms with an incoming lepton field
¢; and an outgoing lepton field ¢; and pseudoscalar-meson
(P) or vector-meson (V') field(s). This Lagrangian directly
gives the amplitudes for the ¢; — ¢; P(V') processes. Ampli-
tudes with a pseudoscalar meson in the final state contribu-
tions come from the pseudoscalar and axial-vector coupling
part of the effective Lagrangian, while the amplitudes with
a vector meson have vector and tensor coupling contribu-
tions. Only the scalar coupling gives no contribution to
the one-meson processes in the final state, ¢; — ;P(V).
It contributes only to the processes with two pseudoscalar
mesons in the final state, £; — ¢; P, P».

3.2 Vector-meson—pseudoscalar-meson interactions

The processes with two pseudoscalar mesons in the fi-
nal state are generated by the scalar-quark-current part
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of the effective Lagrangian and the vector-quark- and
tensor-quark current of the effective Lagrangian. The
scalar-quark-current part of the effective Lagrangian pro-
duces two pseudoscalar fields directly. The vector-quark-
and tensor-quark-current parts produce a resonant vector-
meson state (V), which decays into two pseudoscalar
mesons (P). The VPP interactions necessary for the
description of the VPP interactions appearing in the
charged-lepton SL LFV decays are described by the part of
the meson Lagrangian containing these V PP vertices [45]

Lypp =

i T < —_ T
—ng{pO’“ <2w+a,m LKt 0,K~ _K°9 K0>
a3 05 O

+V3sywh (K*@HK +K°9, >

+V3ey ot <K+a K~ +K° 1‘(0>

<—>

A d
+ KO (=2t 0, K 4700, K

_ _ o
+V3ep K0 ,m+ \/§5PK08;;77/>

— <~ g g
—|—K0*’“(\/§7r_8HK+—7r08uKO—\/§CPK03un

—\/§SPK0<5H17'>}+... (44)

This Lagrangian is a part of the nonlinear (U(3) x
U(3)r)/U(3)y symmetric sigma-model Lagrangian. The
U(3)y symmetry corresponds to the vector mesons in
the linear realization of the gauge equivalent (U(3)y, x
U(3)Rr)global X U(3)v linear sigma-model [114,115]. One
can include the (U(3), x U(3)r)/U(3)y breaking terms
too [115]. That was applied to SL LFV tau-lepton decays
in [45], but for the estimates of the charged-lepton SL LFV
decays it is an unnecessary complication, and we will not
consider it here.

From (44) one can read the cy P, P, couplings in terms of
the g,rr coupling. For instance, c,0 g+ x— = % Gprr-

When the amplitudes by vector-meson resonance(s)
are formed, the square of the vector-meson mass in the
m#, /v, appearing in every vector-meson decay constant,
has to be replaced with (m?, —imy I'v)/yv, where I'y is
the decay width of the vector meson [45].

The intermediate axial-vector-meson and scalar-meson
contributions to lepton LF'V amplitudes are not included
for the following reasons. Axial mesons decay into three
pseudoscalar mesons and therefore they do not contribute
to the LFV processes with one or two mesons in the final
state. Vector-meson dominance is experimentally well es-
tablished, and therefore the scalar-meson contributions are
highly suppressed.

3.3 Charged-lepton SL LFV with one meson in the
final state

Now we can write all amplitudes we are interested in. They
are
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L q .q ..
iME—GY — = g, [ (% _ u; ) Pﬂ’ﬁ‘g

qu7 -4 v
" (7" #q >PRP?”R

+ IUWPLQ lUMV-PRq

PilL+ Piln
+7,.P, (P”V + B”V) + 9, Pr (P”V + B”")
+iop PLg” B —|—1UWPRq B;JF‘;] Uy 5"‘; .
(45)
iMbi—6r = itiy; { ['yMPL <77”P +B”P> +vuPr
(Pyrer) |
+ [PuBEE + Py | }ue (46)

The form factors in (45) and (46) are defined by

Pl n=—¢PERZkY, (a=1,2),(V =" 6,w),
avyL,R y \/_'Y ) ( )
47
2 2
gV _ _ 9z pLR "My v _ 0 4
PzLr m2zc%v 2 Joyy 20 (V=0p"0,w) (48)
2
ijV m L,R L,R L,R
BV, = f:v ; [sz (Bl + By ) + kb (BLs + By )
v kY LR pLR
+k (Blss +BQSS) (Blds 82d5>
<B%55+B2sd>i| ’
(V _p07¢7w7 K*07 K*0)7 (49)
; —2V2
BQJLVR_ v [ ds(md_mS)BI;élj
+ kYa(ms —ma)BiG| . (V=K K9), (50)
2
Pl = S PER (VRS (P=r"nn), (51)
Mz Gy
;.LR_SLR(\/_fP) |: ( Bluu+82uu)
P LR LR P LR
kg (~ Bl + By )+ (Bt + BRY)
LR , pLR LR , »nLR
+k§s (_Bld_s +Bzais> + ks <_Bl§d +std>} )
(P=W°,n7n’,K°,F), (52)

B;LR SL,R ( ) (\/ifP)_

1
2
LR , zLR
Bgdd +BB(Zd>

[ ( By + BBuu)
+kE, (Bt + By

—LR LR
+kg, (_B?I:éfs{‘f' Bai, ) + kL, <_B§§§+83§d> } ;

+k:j{d(
(P=1%n,7,K°KO). (53)

In (52) and (53) s, =1 and sg = —1. The constants kY,
kY, kL, and k(‘{l q, are defined in Appendix E.

LFV leptonic and semileptonic decays of charged leptons

A branching ratio for the processes ¢; — ¢; P with unpo-
larized initial and final particles reads

11 1 )\%(m m?,mp)
8T m2 Iy,

K L ”P’ +’7>”P+B”P‘ ) ip1
(T )
((P”P+B”P) (P”P+B”P) +c.c.>
e (P2 +538) ()
+ (PEE +B3) (BEF ) +e.c)myips
(P +17) (B57)

+ (PR +BA) (B5) +cc.)miips

_|_

UP ‘

+ ((B;J’LP)(B;f )* +c.c.) mimj] . (54)
where I, is the total decay rate of the lepton ¢;,
i1 = 5 (2 —m2)? — (m2 + )
ips = H(m2 -+ — )
ips=mp,
ipys= %(m?+m2p—mj2) ,
ips = %(m? 3 —m?), (55)
and
Mz, y,2) =22 +9° + 22— 20y — 202 —2yz.  (56)

The branching ratio for the processes ¢; — ¢;V with unpo-
larized initial and final particles reads

1
1 1 1 A2(mi,m?,mg)
Blt; 5 4V) = — — — 2T )
( iV) 8 Iy, m? 2m;
.. 12 .. —}
x[(’?{%—k?”v B[+ PP + B )i
,szV 2 ijV 2
[ [F2E B + | 2E B | ] ive
my, v
+((PEL+PH +BYY) (PR +PIY +B) +ec.)
,Ple /Ple *
x(—mimj)+<< 2”L+B”V> ( 28 B | e
mi, mi,

ijV *
P2'7L Bz]V
m 2L
14
iV

P *
2R +B”V> +C.C.> (mjivg)
my,

X (=mZmim;) + ((P{% +P2 +BYY) (

+ (Pﬁ‘g + PPy + B”V) (
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B ,Ple *
+ ( (Pﬁ‘i +PaY +B”V) ( TZ’LR +B”V>

ijV
2'yL

’P *
ijV
m?, + By, ) —i—c.c.)

S P B;fg)(

X (miiv4)‘| s (57)
where
Z'Vl 2m2 [m%/ (mzz + m]2) + (m - m32)2 2mV] )
v

. 1

ive = (m] _mj2)2 - §m%/(m§ +m12) —sMmy,

. 1

1y3 = B (ml —mf—km%/) ,

1
iy = 3 (mf - mj2 - m%/) (58)

3.4 SL LFV decays of a lepton with two pseudoscalar
mesons in the final state

The amplitude for the general ¢; — ¢; P, P> decay rate is
a sum of a scalar-current contribution and resonance con-
tributions (coming from vector- and tensor-current contri-
butions)

Z *)f PPy Z *)f PPy

iMETEPLR — ML +iM :

(59)

where
0;—4; P, P, . —m
re: 7T — luéj [Dfﬁp2 <(ﬁ ﬁl) q 14) PL

+ DIy (G- p) - mld) P
+Efﬁp2i0-;,WPL(pl _p2)uqu
+E{} 10, Pr(p1 — p2)“ql’] e, (60)

Z —)Z P1P2

iMy iy, [PLATp, p, + PrATp p, ] ur, - (61)

In (61) Dfﬁ% and Efﬁ% are form factors built from the

trilinear cy p, p, couplings (defined by the Lagrangian (44)),

normalized vector-meson propagators,

m%, — imv.rv

62
@ —m} +imy Ty (62)

and form factors for £; — ¢;V processes divided by the mass
of the resonant vector meson, e.g.

iV
BV _,PlfyL,R
17L,R = 2 -

my

(63)
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. PP Py P
The expressions for the D;} ¢ and E; ' form factors are

PPy 5ijV 5ijV 5ijV
Dif g = § :(Pl»yL,R‘*'PZL,R"‘BlL,R)

v
2 .
my, —imy Iy
c 64
qz—m%,—kimva VPP ( )
5ijV
PP _ Z ’P2fyL,R LBV
1ILR — P2 2L,R
%
2 .
ms, —imy I}
v ViV CVP1P2 . (65)

q2 —m%,—kimVFV

The sum goes over neutral vector mesons only (V =
0%, ¢,w, K*O K*0). The coefficients of the non-resonant
part of the amplitude, Aip, p,, are defined as the coef-
ficients of the P; P, product of fields contained in the
matrix-valued operator

r

Z (HQ)%‘I& <B3q ot B3qaqb> ’ (66)
9a,q9p="2u,d,s
where IT is the matrix of the pseudoscalar fields
I=
0+ s+ %771 Vart V2K
ol 0+ g+ 2y VIK°
V2K~ V2K° ~Zs+Zm
(67)

For example,
ALR L,R LR , zR
17070 — Z BSuu + BSuu + Bgdd + Bde . (68)

Having the amplitudes, one can easily evaluate the branch-
ing fractions. We assume that incoming and outgoing par-
ticles are not polarised. We have

1 (mi—m;)?

1 1

Bl > PP = 555 T 30m3

d812

(m14m3)?
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52
1 1
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+((B2™) (Ef{?)* +ec) Iy

+ (A ) (ARe,p,) " + ) I

+ (D) (BR™) + (DI) (BR™) +ec) B

H((L") (BH") + (DI (B") +ee)
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(69)

The Mandelstam variables are defined as sqp = (po — p»)?,
e.g. s12 = (p1 — p2)?. The kinematical bounds on the Man-

delstam variables sj3™ and s}5* are well known [113]. The

I integrals read

L= 23722—1— 25j2(e1 + €2) + (2e162 — ezeq)1,
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2 2

67=m1—m2,
1
2 2
€8=§(mi—mj —512) ,
_ o2 1 2 2

69—m1+§(mi+mj—812) ,
€10 = S12,

2 2
e11 = 2mj +2ms — s12,

(72)

€12 = —€4.

4 Minimal SO(10) model and its predictions

Now we have all that is needed to find SL. LFV pro-
cesses: the description of the SUSY-breaking mechanism,
the RGE equations connecting the GUT scale quantities
with the weak-scale ones, the relevant interaction and mass
parts of the MSSM Lagrangian with additional heavy neu-
trino fields, the effective Lagrangians of the processes con-
sidered at the MSSM level and the hadronization proced-
ure for the quark currents. As explained in Sect. 2.1, in
order to perform a concrete evaluation for the SL LFV
processes, one needs information on the Dirac-neutrino
Yukawa couplings (see Sect. 2.1). In this paper, we make
use of the minimal SO(10) model to obtain them. We begin
with an brief overview of the minimal SUSY-SO(10) model
proposed in [77] and recently analyzed in detail in [78-87].
Even when we concentrate our discussion on the issue of
how to reproduce the realistic fermion mass matrices in the
SO(10) model, there are lots of possibilities for the intro-
duction of Higgs multiplets. The minimal supersymmetric
SO(10) model is the one in which only one 10 and one
126 Higgs multiplet have Yukawa couplings (superpoten-
tial) with 16 matter multiplets. The quark and lepton mass
matrices can be described as [77]

My = c10M10 + c126 M126
Mgy = Mo+ Mg,

Mp = c10M10 — 3c126M126 ,
M, = Myo —3Mi26,

Mg = cr M2, (73)
where M,, My, Mp, M, and Mg denote up-type quark,
down-type quark, neutrino Dirac, charged-lepton and
right-handed neutrino Majorana mass matrices, respec-
tively. Note that all the quark and lepton mass matrices are
characterized by only two basic mass matrices, My and
M6, and three complex coefficients c1g, ¢126 and cg.

The mass matrix formulas in (73) lead to the GUT rela-
tion among quark and lepton mass matrices [77-82],

M, :Cd(Md-i-F.:Mu) R (74)
where
3
g = —5c10 +C126 7 (75)
C10 — C126
4
= 76
3c10 + c126 (76)
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Without loss of generality, one can start with the ba-
sis where M, is real and diagonal, M, = D,. Since My
is a symmetric matrix, it can be described as My =
VexnmDaVigy by using the CKM matrix Voxy and
the real diagonal mass matrix Dg.2 Considering the
basis-independent quantities, tr[ M} M,], tr[(M] M.)?] and
det[M] M,], and eliminating |c,|, one obtains two indepen-
dent equations [78—82]:

N IAA w[(M, ML)
mg—l—mi—f—mg m‘c}—i—mﬁ—f—m;‘.
tr[M, M.] det[M, M.]
= : (78)
m2+m?2 +m2 mZm2m2

where M, = VC*KMDdVCTKM + kD,. With input data for six
quark masses, three angles and one C P-phase in the CKM
matrix and three charged-lepton masses, one can solve the
above equations and determine x and |cq4|. However, one
parameter, the phase of ¢g4, is left undetermined [78-82].
The original basic mass matrices, M1y and Mjg¢, are de-
scribed by [78—-82]

34 |cale” lcale!” k

Mg 1 VékKMDdVéKM+ 1 Dy,
(79)
1—|cqle' ., cale'k
Mize = %VCKMDGZVCTKM - led D, , (80)

as functions of o, the phase of ¢4, with the solutions |c4| and
K, determined by the GUT relation.

The GUT relation (74) is valid only at the GUT scale.
All quantities involved in the GUT relation have to be
determined from the corresponding experimentally known
quantities at the weak scale, RGE evolving them to the
GUT scale. The experimental errors for the weak-scale
quantities around their cental values [116] and phenomeno-
logically constrained region of tan 3 [94] define the experi-
mentally allowed region of input parameters.

Searching for the solution of the GUT relation is per-
formed by sampling points in the parameter space, and
checking whether (77) and (78) can be fulfilled [78-82].
The solution is not easy to find for several reasons. First,
the number of free parameters of the minimal SO(10)
model is almost the same as the number of input values
(thirteen) [78—82]. Second, the solutions depend on the
phases of fermion mass eigenvalues, which are undeter-
mined by the diagonalization procedure. For simplicity, the
masses are taken to be real, with a — sign for m,,, m., mq
and mg, and + for m; and my. Third, the solution of (77)
and (78) is very sensitive to the input values and exists for
a very restricted region in the parameter space. For the in-
put values, we have taken the central experimental values

2 1n general, My =U*D4U f by using the general unitary ma-
trix U = P13l 7Ts VCKMeiB/Te‘ ' T8 We omit the diagonal
phases to keep the number of free parameters in the model as
small as possible.
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for all three CKM angles and all quark masses except m
and have varied tan 3, mg and 0 to find the solution. The
solutions always appear in pairs, with approximately equal
(K, |cr|) values. For a given tan/ the solutions exist in
a small region in the (ms, d) space of the bra (i.e. left angle,
“(") shape, which is essentially the same for every tan
value. An example of such a region is given in Fig. 1 (black
and green dots). The solutions of the GUT relation exist
within the interval 2.019 < tan 8 < 58.69. At the bound-
ary points the numerical instabilities characteristic for the
CMSSM appear [94]).

To illustrate the characteristic values of the relevant
parameters obtained numerically, we list them for the fol-
lowing values of the parameters: tan 3 =45, m, = 0.073
and 6 = 1.2. One of the two solutions for (k, |cr|) is

£ =10.0133 —0.0005951,

|ca| = 7.065. (81)
For these values of varied parameters one obtains the fol-
lowing absolute values of the charged fermion masses (in
units of GeV):

m, =0.00103, m.=0.299, m;=133,
mgq =0.00170, m,=0.0264, my=1.55,
me = 0.000411, m, =0.0868, m,=1.69,

and the CKM matrix (in the standard parametrization) is

Vexkm =
0.975 0.222 0.000101 — 0.002611
—0.222—0.000113i 0.974+0.000121i 0.0320 s
0.00613 — 0.00254i —0.0314 — 0.000584i 0.999

at the GUT scale.

Once the parameters  and |cq4| are determined, one
can describe all fermion mass matrices as a function of
the phase o, using (73), (79) and (80). The corresponding
Yukawa matrices are determined, too. The right-handed
neutrino mass matrix depends on the parameter cgr, too.
Therefore, the minimal-SO(10) model-light-Majorana-
neutrino mass matrix, M, = —MgMglMD, is a function
of the phase o and the parameter cgr, too.

There is one comment in order. The bases of the u, d, e,
D and R states are strongly correlated in the SO(10) phase
(see (73)). In the MSSM phase, below the Mx scale, this
correlation is lost, and the bases of these states can be cho-
sen at will, up to the known low-energy constraints (e.g.
the CKM relation for u and d states). In the following, the
basis in which both the charged-lepton and right-handed
Majorana-neutrino mass matrices are diagonal with real
and positive eigenvalues at the GUT scale [70] is chosen.

The parameters ¢ and cr are determined by fitting
the neutrino oscillation data. RGE evolving the M, ma-
trix to the weak scale [78—82,117-120], and adjusting the
neutrino oscillation data, one obtains the explicit values
for 0 and cr. The neutrino oscillation fit additionally
constrains the parameter space of the GUT-relation so-
lutions. Only part of the SO(10)-GUT-relation (SO(10))
solutions satisfies the neutrino oscillation-fit condition
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(NOFC) in the Fig. 1, too. They are represented by black
regions in Fig. 1. It should be noted that the NOFC solu-
tions exist for each value of tan 3. For small tan 3 values
the region is larger and either touches the § = 7w boundary
of the (ms,d) parameter space or is close to it. For larger
tan (3, it is smaller and closer to the § = 0 boundary.

Turning back to the explicit values for the Yukawa ma-
trices, for tan 8 = 45, ms; = 0.073 and é = 1.2 one obtains
o =3.163 [rad] and cg = 2.752 x 105, leading to the Dirac-
neutrino Yukawa matrix,

Y, =
0.000602 +0.00391i —0.000937 — 0.000266i
0.00483—0.0130i  —0.0270 — 0.0478i
0.00414—0.00144i  0.0564 — 0.0752i

0.0412+40.0513i
0.326+0.128i
—0.353+0.584i
(82)

To perform the MSSM-RGE [103,104] from the GUT
scale to the weak scale, one has to know the MSSM-RGE
initial values. These include Yukawa matrices which are
now fixed, SUSY-breaking parameters and MSSM-Higgs
parameters which are functions of the mSUGRA parame-
ters mo, M/ and Ay, as well as the sign of the parameter
u defined in (4). The parameter Ay is chosen to be equal
to zero, because the parameters in the CMSSM weakly de-
pend on its value [94,130]. The parameters mg and M/,
are chosen to fit the WMAP constraint on the cold dark
matter (CDM) relic density [127,128],

Ncpmh?® =0.1126, (83)
which can be transmuted into the approximate linear re-
lation between mg and M /5 [129,130], with coefficients of
the relation dependent on tan 3. For instance, for tan 8 =
45and Ag =0

mo [GeV] = %Ml 12 [CeV] 1150 [GeV].  (84)
Further, the negative sign of u, u < 0, is chosen to obtain
the MSSM contribution to the muon anomalous magnetic
moment within the present experimental error (see below).
There is only one mSUGRA parameter left undetermined.
We took M /5 as the remaining free parameter.

With the initial conditions thus determined, one can
solve the MSSM RGEs for all MSSM parameters evolv-
ing them from the GUT scale to the weak scale (they are
also functions of the parameter M ;). Then one can find
the masses, couplings and mixings for the SUSY particles.
These data are used as an input into the formulas for the
SL LFV amplitudes presented in previous sections. Notice
that all masses at the weak scale functionally depend on
the parameter M /5.

The SL LFV amplitudes depend on the parameters de-
scribing the hadronization of the hadron currents. Here is
a list of the parameters we use. For the pseudoscalar meson
decay constants, we take [113]

fr0=0.119[GeV],
fr = 0.118 [GeV] .

fn=0.131[GeV],
(85)
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Fig. 1. The (ms,d) regions of SO(10) solutions, evaluated for
tan 3 = 2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 are rep-
resented by black and red regions. The regions have the bra
shape. The black dots represent SO(10) GUT-relation (SO(10))
solutions which satisfy the neutrino-oscillation-fit condition
(NOFC). The SO(10)-NOFC solutions exist for each tan(
value. For smaller tan 3 values, the SO(10)-NOFC-solutions’
region is larger and closer to the case § = w, while for larger
tan 3 values it is smaller and closer to the case 6 =0

For the vector-meson decay constants we use the values ex-
tracted from the vector-meson decay, V — etTe™ [47],
Yo =2.518, 7 =2.993, ,=3.116. (86)
The mixing angles between the singlet and octet states for
the vector mesons and for the pseudoscalar mesons that we
use are taken from [113]:
Oy =35°, 6Op=-17.3°. (87)
In order to investigate the dependence of SL LF'V branch-
ing ratios on the model parameters we plot their depen-
dence on mz; and tanf: for T — em®, T —en, T —en,
T — ur®, 7 — un, and 7 — un’ in Fig. 2, for 7 — ep®, 7 —
wp®, T — ed, T — pd, T — ew, and 7'0—> pw in Fig. 3, for
r—entn , 1w un~nt, 7 - eK°K , and 7 — uK°K ",
T—eKTK~,and 1 — uK+* K™, in Fig. 4, and for 7 — e
and 7 — py in Fig. 5. The tan § = 15, 25, 30, 35, 40, 45 and
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50 are chosen because for these values the MSSM con-
tribution to the anomalous magnetic moment assumes
values smaller than the corresponding present experimen-
tal error Aaj;Pup = $(9u—2)us =7x1071% g (up is the
Bohr magneton) for mz < 400GeV (M, < 1000 GeV).
Mj /5 values larger than 1000 GeV are not permitted by
the WMAP constraint [129,130]. As shown below and
in Fig. 6, the region in which the curves are defined is deter-
mined by the condition Aa, mssm < 7 x 10710,

In Fig. 6, the mz, and tan 3 dependence of the MSSM
contribution to the anomalous magnetic moment
Aay, mssv and B(pu — ey) is shown. The points where the
curves cross the experimental upper bounds (horizontal
red lines in the figures) for the anomalous magnetic mo-
ment and B(u — e) (7x 10719 [131] and 1.2 x 10711 [113],
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respectively) determine the boundary values of the ms;
mass that can be used in the evaluation of the LF'V branch-
ing ratios. The intersections of the curves with the ex-
perimental bounds (red straight lines) are shown in small
inserted panels. Starting from the left to the right, they
correspond to tan § = 10, 15, 20, 25, 30, 35, 40, 45, and 50
in the left panel (B(u — e7y)) and to tan 8 = 50 and 45, 40,
35, 30 and 15, and 25 in the right panel (Aa, mssm). No-
tice that the number of intersections in the right smaller
panel is not equal to the number of curves. The reasons for
that are the following: the Aa, mssm curves for tan 8 = 50
and 45 are very close and are represented by one intersec-
tion; the curves for tan 3 = 30 and 15 cross and are also
represented by one intersection; tan 3 = 10 does not cross
the 7 x 10710 value at all, the tan 3 = 20 curve crosses it
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Tr Tr correspondence with the tan 8 values



138 T. Fukuyama et al.: LF'V leptonic and

above m;z =400 GeV (M, /5 = 1000 GeV). Notice that all
msz boundaries determined by the B(u — ey) are lower
than the corresponding Aa, mssm boundaries. Therefore,
the latter give the lower bounds on the m; mass. Further,
Aay mssm does not give the upper bound on the m; mass
for any tan 8 value. Therefore, this model gives only the
lower bound on the mz (or My /5) mass.

The theoretical upper bound for £ — ¢’ and SL LFV
branching ratios for tan 8 = 30, 35, 40, 45 and 50 are given
in Table 1. The branching ratios for tan 3 = 15 and 25 are
not included for two reasons. First, their values are very
small compared to the corresponding experimental upper
bounds. Second, the regions of the allowed M; /5 values
for tan3 = 15 and 25 obtained from the WMAP con-
straint [129] do not have overlap with the corresponding

semileptonic decays of charged leptons

regions of the model considered here. One can immediately
notice that the SL LFV branching ratios of the 7 lepton
are too small compared to the present experimental upper
bounds. On the other side, the £ — £’ branching ratios are
much closer to the experimental upper bounds. Especially
for tan 8 =50, B(T — u7y) exceeds the corresponding ex-
perimental upper-bound value.

To illustrate some general properties of the results given
in Table 1 and Figs. 1-6, we again describe the results ob-
tained for tan § = 45. The maximal values for the branch-
ing ratios of the 7 — e/un® processes are found to be

BR(7 — en®) ~2.5x 10714,
BR(1 — pn®) ~3.3x 1072,

(88)
(89)
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and for the 7 — e/un processes BR(7 — e/un) ~ 0.15 x
BR(7 — ¢/umP). These values are obtained with the follow-
ing set of parameters: tan 3 = 45, 4 <0, Ag =0, M/, =
450 [GeV] and mgo = 295 [GeV]. The parameters mgy and
M/ (and Ao) satisfy the constraint (84). Therefore, the
neutralino dark matter scenario can be realized. This
parameter set also gives the MSSM contribution to the
muon’s g — 2 within the range of the experimental error of
the recent result of the Brookhaven E821 experiment [131].
It also provides the 7 — py and p — ey branching ratios
close to the current experimental bound [43]. The ratio be-
tween the two processes 7 — e/um’ and 7 — e/un is the
result of the dominance of the Z-boson-penguin amplitude
in these processes, and it reflects the difference in the form
factors and the mixings between the singlet state and the

BR(t > en'm ) BR(T > un'm )
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octet state of the 7 mesons,

HN (%>2>< (%+f/—%>2~0.15.

We can also see the correlation between the branch-
ing ratios for the processes 7 — e/up’ and T — e/uy as
BR(T — e/up®) ~ 3.2 x 1073 x BR(7 — ¢/p7y). The esti-
mate of this ratio based on the assumption of photon-
penguin-amplitude dominance in these amplitudes gives
the result

BR(T —e/up®) 1 (i

L
Y0

2
N -3
BRI S e/iy) " 2 ) 7x107%.  (91)
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This shows that the Z-boson-penguin amplitude is com-
parable in magnitude to the photon-penguin amplitude.
When we impose the constraints from the recent muon’s
g — 2 measurements [131] and from the upper limits on the
u — ey branching ratio [113], we obtain the result that the
model permits the mz_ values satisfying

Mz, > 218 [GeV]. (92)
As explained, the lower bound comes from the muonic g —
2 constraint. The lower bound from the p — ey branch-
ing ratio is below the lower bound from the muon’s g —
2 constraint. The g —2 curve has an uprising behavior
above mz, =350 [GeV], but at mz, = 1000 [GeV] (M, /, =
2200 [GeV]) it is almost independent on mz, and has
a value 5.3 x 10719, slightly below the present experimen-
tal g —2 uncertainty (the corresponding tan = 15, 25,
30, 35, 40, 45, 50 curves show the same type of behav-
ior). Therefore, one can expect that the improvement of
the g —2 measurements will give the upper limit on mz,,
too. Using the lower bound on ms, values, one can find
the theoretical upper bounds for all leptonic and SL. LFV
branching ratios.

5 Summary

The evidence for the neutrino masses and flavor mixings
implies the non-conservation of the lepton-flavor symme-

50 (tan 3 = 50 and 45, 40, 35, 30 and 15, 25)

try. Thus, the LFV processes in the charged-lepton sector
are expected. In the supersymmetric model based on the
minimal SO(10) model, the values for the rates of the LEV
processes are generally still several orders of magnitudes
below the accessible current experimental bounds. In this
paper, we have presented the detailed theoretical descrip-
tion for the SL LFV decays of the charged leptons with
one or two pseudoscalar mesons or one vector meson in
the final state. Also, some previous formulas have been
corrected. The y-penguin amplitude is corrected to assure
gauge invariance, the Z-penguin amplitude is corrected,
new contributions to the box amplitude have been found
and previously neglected terms are given.

To evaluate the decay rates of the LF'V processes within
the MSSM, the parameters and the LFV interactions of
the MSSM have to be specified. It has been shown [78—
82] that the minimal SUSY-SO(10) model can simultan-
eously accommodate all observed quark-lepton mass ma-
trix data involving the neutrino oscillation data with ap-
propriately fixed free parameters. Here we show that it
can be done for any value of tan 8 (Fig. 1). In the SUSY-
SO(10) model, the Dirac-neutrino Yukawa coupling matrix
is completely determined, and its off-diagonal components
are the primary source of the lepton-flavor violation in
the basis where the charged-lepton and the right-handed
neutrino mass matrices are real and diagonal. Using this
Yukawa coupling matrix, we have calculated the rate of the
LFV processes assuming the mSUGRA scenario. The an-
alytical formulas of various SL LFV processes, {; — ¢; P,



T. Fukuyama et al.: LF'V leptonic and semileptonic decays of charged leptons

141

Table 1. Theoretical upper bounds (T.u.b.) £ — ¢'~ processes and dominant SL LFV processes. The upper bounds are obtained
at the lower m; values, obtained from the muonic g — 2 constraint. We quote the experimental data (E.u.b) mainly from [121-126]

and partly from [113]

Process T.u.b. E.u.b.

30 35 40 45 50
©— ey 6.3x107 14 3.6x10713 9.8x107 13 2.5x 10712 7.4x10712 1.2x 1071 [113]
T — ey 4.2x10713 2.8x 10712 8.3x 10712 2.3x 10711 7.8x 107 1.1x 1077 [124-126]
T — py 4.5x 1071 3.2x10710 9.4x10710 2.7x107° 9.0x107? 6.8 x 107% [124-126]
7 — en’ 2.3x 107 1P 49x1071° 9.2x 10710 1.9x 107 5.2x 1071 1.9x 1077 [121,122]
7 — pr® 3.5x 10713 7.0x 10713 1.2x10712 2.5x 10712 6.5x 10712 4.3x 1077 [121,122]
T—en 3.7x10716 8.3x107 16 1.6 x 10715 3.3x107% 9.0x 1071 2.3x 1077 [121,122]
T — pm 6.4x 1071 1.3x10713 2.2x 10713 4.4x10713 1.2x10712 2.3x 1077 [121,122]
T —en 4.3x1071¢ 8.8 x 10716 1.6x 10715 3.2x 1071 8.5x 107 1P 10 x 1077 [121, 122]
T — 4.9x107 1 1.0x 10713 1.9x 10713 3.8x10713 1.0 x 10712 4.1x1077 [121,122]
—ep? 2.8x1071° 1.1x 1071 2.8x 1071 7.3x107 14 2.3x10713 2.0x 1076 [113]
7 — pp° 4.6x 10713 1.4x10712 3.4x10712 8.5x 10712 2.8x 10712 6.3 x 107% [113]
T — e 1.9x 10715 4.6x1071° 9.3x 10715 2.1x 10714 6.1x 10714 6.9x 1076 [113]
) 2.7x 10713 6.1x 10713 1.2x10712 2.6 x 10712 7.5 x 10712 7.0x 1070 [113]
T — ew 2.9 10716 8.7x 10716 2.7x 10715 5.2x 107 1% 1.6x10" 1 -
T — pw 1.7x10714 7.8x 10714 2.1x10713 5.5x 10713 1.8x 10712 -
roertrT  54x1071° 2.9x 1071 8.1x107 1 22x10713 7.2x10713 8.7x 1077 [123]
T purtr  6.6x10713 3.2x10712 8.9x10712 2.4x 1071 8.0x 10711 2.8x 1077 [123]
7> eK'K’  56x10716 1.8x 10715 4.3x1071° L1ix107 3.2x 1071 2.2x 1079 [113]
7= pK'K’  61x107M4 1.9x 10713 44x10713 1.1x 10712 3.2x10712 3.4x 1076 [113]
r—eKTK~ 88x10716 2.9x10715 7.1x10715 1.8x10714 5.4x 10714 3.0x 1077 [123]
T uKTK™ 95x1071 3.0x10713 7.2x 10713 1.8x 10712 5.5x 10712 11.7x 1077 [123]

¢; — 4V and {; — {; PP, are given. Using these formu-
las, we have numerically evaluated the ¢; — ¢; P, £; — {;V
and ¢; — {; P, P> branching ratios. Among these, only the
branching ratio of 7 — p7y is close to the present experi-
mental value [124—126], while 7 — ey might be interesting
for the near future experiments [132]. The typical CMSSM
parameters used in the calculations are assumed to real-
ize the neutralino dark matter scenario consistent with the
WMAP data.
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Appendix A: Notation for the MSSM
Lagrangian

Here we summarize our notation, necessary for defining the
masses of the sparticles in the MSSM Lagrangian. The vac-
uum expectation values of the MSSM Higgs fields satisfy

v=1/(HO? + (H9)? = 174.1 [GeV],, (A.1)
and
(H3)
tan 8 = —oc. (A.2)
(H3)
The charged fermion mass matrices are given by
MY = —YHysin g, (A.3)
M7 =Y vcosf3, (A4)
M9 =Y¥ycos 3. (A.5)

The chargino mass matrix is written

L= —(W—Pt, qu_R) , Mgx (WE> +h.c.,
Hyy,
_ M, V2Myy cos 3
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The neutralino mass matrix is

1 —~
/“_—5 (BLv WE» HdLv HuL) ’
By,
w3
Mo NOL +h.c.,
HdL
Hyy,
M)ZO =
My 0 —MzswcosB Mzswsin(
0 Mo MzgcwcosB —Mgewsin(
—Mzswcos3 Mgzgcw cos B 0 — i
Mzswsin3 —Mgzcwsin3 — 0
(A7)
The squark mass matrices are written
£=—(m3)" ali;— (m3)"” did;,
m2 =
mZ+ MM, —ATvsinﬂ M}p* cot 3
—Auvsmﬁ Mypcot B m2+ MM} — M2 cos 28s%;

n M%cos2ﬁ (5—5 W) 1343 0
0 %M% cos 2,83\2,V13X3 ’

m

( m+MTMd A;vcosﬂ M) p* tan 3 )
+

Q..INJ

Advcosﬁ Mgptan 8 m35 —I—MdMJf M%cos2ﬁs%v
M%cos2B (— 5+ 3sw) Lsxs 0
0 —%M%COSZBS%V].:;X?, )
(A.8)

The slepton mass matrices read

L=—(m2)75 5 — (m2)Vele;,

1
m?, = m2—|— §MZ COS2,813><3,

%:

€

< m2+ MJM. ATvcosﬁ M/ p* tan 8 )

Aq.v COS,B Mptan 3 m2+ M, M}~ M2 cos 2ﬁs%v
MZ cos28 (—3 +s%y) Laxs 0
+ 2 2
0 — M3 cos 2B3siy1l3xs
(A.9)

They are diagonalized by unitary matrices as follows:

OrM,+ 0] = diag (M~, : M~,) :

Xg

ON My, OON—dlag M~0 M 9 M~o M 0) )

) (f=u,de),
(A.10)

f1

(
Ufm?;U;v =diag (m2 ,
(

U;m%U;:diag ml,l,ml,z,m )
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Appendix B: Lagrangian for fermion—
sfermion—gaugino/Higgsino
interactions in MSSM

The LFV interactions in the MSSM include the fermion—

sfermion—gaugino/Higgsino vertices. These vertices, and

the corresponding coupling constants (ClL AI}((f ) NlL AI;}(f ),

f =v,e,u,d) are defined by the following Lagrangian:

K2

L=u; [CXXPL—FCR(U PR:| %—XC’ZVX

+d C}:Lg(PL—FC }X;‘ﬂx
ACRY) Patex + [ M P+ O By 57
TUCax TRXa6x €0 |Ciax L+ 0 ax IR XaVX

+u; Nﬂ})PL +N§4(;L()PR} %9417){

+d; Nﬂ?{)PL+N (d )PR} Xodx
+ ﬁiNg;)PR%%ZX +é; [NiA(i()PL + NR(E)PR} XAeX
+h.c.

=u, Py dx |:g {— T (OR)A2(U§)X1}:|

) V2Myy sin 3
* mdk
X (Vorm) ks (Vi )ki (OL) a42(U3) x j13 }|
+d; PLX qiix (Oi)Az(UE)Xj}

x (Vokm)ij)

+7; PRX hdx

) { )
" L v2Mw cos 8

g {<oa>A1<U;:>Xj -
x(08) 42 (U3) x

My,

P VBt sinp

J+31 (V)i
+viPR)EXéX {(OL)Al(UT)
%(01) 42Uz ) x. 548} UMNS)U]

+ePLX VX [g {

M,

_l’_ -t
V2 My cos 3

(0 a0 |

+ePRX 4V lg{ Og) a1 ( )Xz}]

+7; PLX% dix V) aa(U) xi

R BTy L
x——tanOw(O) 1(U, )X1+3}:|

May,;

_ ~0 ~ g *
+7; PrX % x [7 {m( ~N)aa(Ug)x,i+3

+ |:(ON)A2 + % tan 9W(ON)A1] (U}f)Xi}

3 ~0 7 g mdi *
+diPLX21dX {ﬁ {—W(ON)AB

(
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+EiPR>~(21JX )AS(U )x X,j+3

9 md,
S\ i€
+ {_(ON)A2+%tan0w(0N)A1} (U(}f)Xj} (VCKM)H:|

9

+ 7, PRX S Dx

W [(On) a2 — tan 0w (On ) 1]
(U*) 7]((]MNS)Z']
_ ~0 ~ g Me
+& PLYOéx {ﬁ{ m
X +2tanbw (Oxn) a1 (UZ) x,i+3}]

[\

(ON) as(Ug) xi

+&Pry%éx [% {—#@(ON)A?»(U;‘)XJ%
+[~(OnN) a2 — tan Ow (On) a1] (U7) x|
+h.c., (B.1)

where Uyng is the Maki-Nakagawa—Sakata matrix. The
rest of the notation either has been defined before or is the
same as in [70].

Appendix C: Trilinear interactions of fermions
or bosons with Z%-boson or
photon

The interactions of the Z%boson or photon with any
fermion or any boson follow from the SU(2)r, x U(1)y
gauge symmetry. We have

b=-03 F [Z (If 1 QfSW) +A(stf)} i
(C.1)
a-s ) (1

+A4* (swQ7)].

Qfﬁ)

cw

(C.2)

The interaction Lagrangians are flavor-diagonal in the
weak basis. In the mass basis, the interactions with the
photon remain diagonal, because all mixed states A must
have the same charge, @ 4. On the other hand, the interac-
tions with the Z-boson, which depend on the charge (Q4)
and the third component of the weak isospin (I34), are not
in general flavor-diagonal in the mass basis, because the
mixed states may have different I3 4 values.

For LFV processes, the interaction of the photon and
Z-boson with the charginos, neutralinos and sfermion
fields is needed. The Lagrangian for the corresponding
weak-basis fields is easily written knowing the charges
and the I3 of these fields. After transformation from the
weak basis to the mass basis, the following interaction La-
grangians are obtained:

2
~_ - - S ~—
Ly~ :_gXAZ[(E,IZ% )PL+E,1}1(§< )PR)‘F_CVV\\;(SBA XB

e, ASABYE (C.3)
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Lo=—g007 B P+ ERYO P }x , (C.4)
Ly — —gFxi0,fy 2" [Dy] - ef3i0, Fv A [Q1],
(C.5)
where
Lix) _ 1 . 1 .
Eap _a (OL)Al(OL)Bl+§(OL)A2(OL)BQ ,
(C.6)
Rx") _ L 1
Eg ' = ” (Or)a1(OR)B1+ = (OR)Az(OR)B2
(C.7)
L(x%) 1L /1 . 1 .
Ejg ' =——| 5(0N)a3(Oy)B3— 5(On)aa(Ox)Ba |,
cw \ 2 2
(C.8)
0 0 %
ERY) =-EL% )", (C.9)
~ N ) 2
DQYZI?{L(Uf)Xi(Uf)Yz— ;fL% (C.10)

Here, in the definition of D&Y, the index ¢ is for sum-
ming over the generation 1, 2 and 3. QL is the charge of

the sfermion f1,, and IgL is its third component of isospin
in the weak basis. The charges and third components of
the isospin of the weak-basis fields for the charginos and
neutralinos are exphc1t1y wrltten in the definitions of the

constants F ;' R(X and EL Rx )

Appendix D: Loop functions

In this appendix the loop functions appearing in the Z-
boson amplitude and the box amplitudes are listed.

D.1 Z-boson loop functions

The Z-boson amplitude comprises two-loop functions from
the triangle-diagram part of the amplitude, Fj(a, b, ¢) and
Fs(a,b,c), and two-loop functions from the self-energy
part of the amplitude, fi(a,b) and fi(a,b). These loop
functions are

1 |alna—blnb alna—clnc
Fl(aybac)—_b_c[ a—b - a—c ) (Dl)
3 11
FQ(aybac)_g_Zb_c
21 2 21 2
y la Ina—b"lnb a”lna—c’Inc . (D2)
a—b a—c
1 Ina —a?>+b*>+2b%*(lna—1Inb)
b)=-—— D.
fleb)=5- 4(a—b)2 , (D3)
1 Inb a®>-b2+2a*(Inb—1Ina)
b)=-—— D4
fola.b) =5 -5 4(a—b)2 (D-4)

They are evaluated by neglecting the momenta of incom-
ing and outgoing particles. The functions F; and F5 are



144

symmetric with respect to the replacement of their argu-
ments (a, b and ¢). In the limit of two equal arguments, the
functions F} and F5 have the following form:

a—b—alna+alnbd
(a—1b)? ’
1 Inb a®-b2+2a*(Inb—1na)

yinhv 8(a—b)?

Fi(a,b,b) = (D.5)

Fy(a,b,b) =

(D.6)

The arguments of the logarithms appearing in the F; and
F5 can be divided by any constant, which can be used to
redefine these functions as functions of two variables, for
instance b/a and c/a. The troublesome Inb term in the f;
function can be replaced with In(b/a) because of the uni-
tarity cancellations in the sum N R(e) vV, 54()8{)*, and therefore
f1 and f5 can be expressed in terms of one variable (b/a)
only.

D.2 Box-loop functions

The box amplitude contains two-loop functions, dy and ds:

dO(x7y7Z7w) =
xlnz . ylny
(y—2)z—2)(w—2) (-y)(z—y)(w-y)
zlnz wlnw
a2 @ w)y—w)(z - w)
(D.7)
d2(x7yazaw) =
1 22Inz y2lny
i { G- nw-2) @) y)w-y)
n 2?Inz n 2lnw }
(z—2)(y—2)(w-2) (z-w)(y—w)(z—w)

(D.8)

As mentioned before, they are also by evaluated neglecting
the momenta of the incoming and outgoing particles.

Appendix E: Meson states and quark currents

Meson states are assumed to contain valence quarks only.
The quark-antiquark (g,g;) content of the pseudoscalar-
meson states is given in the Table 2. The quark—antiquark
content of the vector- meson states is obtained by replac-
mg the fields K+, K°, « 7r0 7, KY K=, ng, m, n and
7 by the fields K+ K*O, ot 00, o, K0, K=, s, 1, 6
and w, and the angle 0p by the angle 8y . From the quark
content of the meson fields, one can find the meson content
of e.g. the axial-vector (A) and vector (V') quark currents
(factor of proportionality, Lorentz indices and spinor struc-
tures are neglected),

@~ (- )+ (G )+ 75

T. Fukuyama et al.: LF'V leptonic and semileptonic decays of charged leptons

Table 2. Quark content of the pseudoscalar-meson states and
fields: the listed meson states correspond to the tensor descrip-
tion of meson states [45]. The shorthand notation cp = cos0p
and sp = sin@p is used

|M)  Quark content of | M) Quark content of M (x)
|K) us® ~ bld} su€ ~ dsbu
K° ds® sd*
}n+)> ud® du®
0 1 c c 1 c c
|7) ﬁ(uu —dd°) ﬁ(uu —dd°)
|m ™) du® ud®
K~ su® us®
}R’OQ sd” ds®
1 c c__ c 1 c c c
Ing) Jlg(uu +dd° —2ss°) \/_(uu +dd° — 2ss°)
m uu® + dd® + ss€ uu® + dd® + ss¢
V6 \/5
) cplng) = spln) cpng(x) — spmi(z)
") splng) +cpln) spng(x) +cpni ()

Table 3. Combinations of kq ’qb constants appearing in the
photon-penguin a nd the Z-boson-penguin £ — ¢/ P(V) ampli-

tudes

k o° & w
\% 1 1 1
kr V3 eV VG4
kz 3w w55 JeC2W ~ 55
k 70 n 17/
kP 1 cp + sp sp _ cp
Z V2 V6 23 V6 2v3

=kt + K+ k:’fo Il
- cp sp Cp "o 1 ot
o~ (G 5) " (5 )
o\ B s f i)
= K0t + KD/t + kT x0T

_ 2Cp SP> + < 2SP CP) "
SSa~ | ——F———F4= +|{—F—=+—F=1|nm
=) ( V3 VG

= k' + ko't (E.1)

e~ (G- 75) o'+ (7*7) S
= k2, 6T+ ke wh 4 k2 pOf

e~ (5-25) (77) o7
= k0 6T+ k2wl + k2

ddp
s o (2 BV i (28 v
v~ (2T ) o+ (T )
=kt + ket (E.2)

Here sy =sinfy, and ¢y = cosfy, and the numerical fac-
tors are normalizations of mesons expressed in terms of the
quark fields. The combinations of constants kq q, are con-
tained in the expressions for all quark currents (from the
scalar-quark current to the tensor-quark current), and we



introduce them to abbreviate the expressions for the box
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form factors.

tudes contain the combinations of constants k2'V

in

The photon-penguin and the Z-boson-penguin ampli-

daqp

Table 3. For instance, kv”o = Quky, + Qak5 + QskEY.
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